G-dinaturality

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-dinaturality

An extension of the notion of dinatural transformation is introduced in order to give a criterion for preservation of dinaturality under composition. An example of an application is given by proving that all bicartesian closed canonical transformations are dinatural. An alternative sequent system for intuitionistic propositional logic is introduced as a device, and a cut elimination procedure i...

متن کامل

A Characterisation of the Least-Fixed-Point Operator by Dinaturality

Simpson, A.K., A characterisation of the least-fixed-point operator by dinaturality, Theoretical Computer Science 118 (1993) 301-314. The paper addresses the question of when the least-fixed-point operator, in a Cartesian-closed category of domains, is characterised as the unique dinatural transformation from the exponentiation bifunctor to the identity functor. We give a sufficient condition o...

متن کامل

A Note on Strong Dinaturality, Initial Algebras and Uniform Parameterized Fixpoint Operators

I show a basic Yoneda-like lemma relating strongly dinatural transformations and initial algebras. Further, I apply it to reprove known results about unique existence of uniform parameterized fixpoint operators.

متن کامل

G-Frames, g-orthonormal bases and g-Riesz bases

G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2003

ISSN: 0168-0072

DOI: 10.1016/s0168-0072(03)00003-4